PERMANENT GENETIC RESOURCES NOTE

Permanent Genetic Resources added to Molecular Ecology Resources Database 1 August 2011–30 September 2011

MOLECULAR ECOLOGY RESOURCES PRIMER DEVELOPMENT CONSORTIUM,¹ S. W. A'HARA,² P. AMOUROUX,^{3,4} EMILY E. ARGO,⁵ A. AVAND-FAGHIH,⁶ ASHOKTARU BARAT,⁷ LUIZ BARBIERI,⁸ THERESA M. BERT,⁸ R. BLATRIX,⁹ AURÉLIE BLIN,¹⁰ D. BOUKTILA,^{11,12} A. BROOME,² C. BURBAN,¹³ C. CAPDEVIELLE-DULAC,¹⁴ N. CASSE,¹⁵ SURESH CHANDRA,⁷ KYUNG JIN CHO,¹⁶ J. E. COTTRELL,² CHARLES R. CRAWFORD,⁸ MICHELLE C. DAVIS,⁸ H. DELATTE,¹⁷ NICOLAS DESNEUX,¹⁸ C. DJIETO-LORDON,¹⁹ M. P. DUBOIS,⁹ R. A. A. M. EL-MERGAWY,²⁰ C. GALLARDO-ESCÁRATE,²¹ M. GARCIA,⁹ MARY M. GARDINER,²² THOMAS GUILLEMAUD,¹⁰ P. A. HAYE,²³ B. HELLEMANS,²⁴ P. HINRICHSEN,²⁵ JI HYUN JEON,²⁶ C. KERDELHUÉ,²⁷ I. KHARRAT,¹¹ KI HWAN KIM,²⁶ YONG YUL KIM,¹⁶ YE-SEUL KWAN,²⁸ ELLEN M. LABBE,²⁹ ERIC LAHOOD,³⁰ KYUNG MI LEE,¹⁶ WAN-OK LEE,³¹ YAT-HUNG LEE,³² ISABELLE LEGOFF,¹⁰ H. LI,³³ CHUNG-PING LIN,³² S. S. LIU,³⁴ Y. G. LIU,³⁵ D. LONG,³⁶ G. E. MAES,²⁴ E. MAGNOUX,³⁷ PRABIN CHANDRA MAHANTA,⁷ H. MAKNI,^{11,38} M. MAKNI,¹¹ THIBAUT MALAUSA,¹⁰ RAKESH MATURA,⁷ D. MCKEY,⁹ ANNE L. MCMILLEN-JACKSON,⁸ M. A. MÉNDEZ,³⁹ M. MEZGHANI-KHEMAKHEM,¹¹ ANDY P. MICHEL,²² MORAN PAUL,³⁰ JANICE MURIEL-CUNHA,⁴⁰ S. NIBOUCHE,¹⁷ F. NORMAND,³ ERIC P. PALKOVACS,⁵ VEENA PANDE,⁴¹ K. PARMENTIER,⁴² J. PECCOUD,⁹ F. PIATS-CHECK,⁹ CECILIA PUCHULUTEGUI,⁸ R. RAMOS,^{25,43} G. RAVEST,²⁵ HEINZ RICHNER,⁴⁴ J. ROBBENS,⁴² D. ROCHAT,⁴⁵ J. ROUSSELET,³⁷ VERENA SALADIN,⁴⁴ M. SAUVE,⁹ ORA SCHLEI,⁴⁶ THOMAS F. SCHULTZ,⁵ A. R. SCOBIE,⁴⁷ N. I. SEGOVIA,²³ SEIFU SEYOUM,⁸ J.-F. SILVAIN,¹⁴ ELISABETH TABONE,⁴⁶ J. K. J. VAN HOUDT,^{24,49} S. G. VANDAMME,^{42,24} F. A. M. VOLCKAERT,²⁴ JOHN WENBURG,⁴⁶ THEODORE V. WILLIS,⁵⁰ YONG-JIN WON,²⁸ N. H. YE,⁵¹ W. ZHANG²² and Y. X. ZHANG³⁵

¹Molecular Ecology Resources Editorial Office, 6270 University Blvd, Vancouver, British Columbia, Canada V6T 1Z4, ²Forest Research, Northern Research Station, Roslin, Midlothian, Scotland EH25 9SY, UK, ³CIRAD, UPR HortSys, Station de Bassin Plat, BP180, F-97455 Saint-Pierre, La Réunion, France, ⁴Université de la Réunion, 15 avenue René Cassin BP 7151, F-97715 Saint-Denis Messag, Cedex 9, La Réunion, France, ⁵Marine Conservation Molecular Facility, Duke University Marine Laboratory, Nicholas School of the Environment, 135 Duke Marine Lab Road, Beaufort, NC 28516, USA, ⁶Plant Pests & Diseases Research Institute, PO box 1454, 19395 Tehran, Iran, ⁷Molecular Genetics Laboratory, Directorate of Coldwater Fisheries Research, Indian Council of Agricultural Research, Bhimtal-263136, Nainital, Uttarakhand, India, ⁸Florida Fish and Wildlife Research Institute, 100 Eighth Avenue S.E., Saint Petersburg, FL 33701-5095, USA, ⁹Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175 (CNRS, Université Montpellier 2), 1919 route de Mende, 34293 Montpellier Cedex 5, France, ¹⁰Equipe 'Biologie des populations en interaction', UMR 1301 IBSV INRA-CNRS-Université de Nice-Sophia Antipolis 400 route des Chappes, 06903 Sophia-Antipolis Cedex, France, ¹¹Unité génomique des insectes ravageurs des cultures d'intérêt agronomique, Faculté des Sciences de Tunis, Université de Tunis-El-Manar, Tunisia, ¹²Institut Supérieur de Biotechnologie Béja, Université de Jendouba, Tunisia, ¹³INRA, UMR1202 BIOGECO (INRA/Université de Bordeaux), F-33610 Cestas, France, ¹⁴IRD, UR 072, Laboratoire Evolution, Génomes et Spéciation, UPR 9034, CNRS, 91198 Gif-sur-Yvette, France and Université Paris Sud 11, 91405 Orsay Cedex, France, ¹⁵Laboratoire Mer, Molécules, Santé (MMS), Université du Maine, Le Mans, France, ¹⁶Division of Seed & Seedling Management, Korea Forest Seed and Variety Center, 72, Suhoeri-ro, Chungju-si, Chungcheongbuk-do, 380-941, Korea, ¹⁷CIRAD, UMR PVBMT, 7 chemin de l'IRAT, Ligne Paradis, F-97410 Saint-Pierre, La Réunion, France, ¹⁸Unité de recherche intégrée en horticulture, INRA, 400 route des Chappes, 06903 Sophia-Antipolis Cedex, France, ¹⁹Laboratory of Zoology, University of Yaoundé I, Faculty of Science, PO Box 812, Yaoundé, Cameroun, ²⁰Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute (GEBRI), Minoufia University, El-Sadat City, Minoufia, Egypt, ²¹Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Centro de Biotecnología, Universidad de Concepción, Casilla 160-C, Concepción, Chile, ²²Department of Entomology, The Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA, ²³Departamento de Biología Marina, Universidad Católica del Norte & Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Larrondo 1281, Coquimbo, Chile, ²⁴Katholieke Universiteit Leuven (KULeuven), Laboratory of Animal Diversity and Systematics, BioGenomics Division, Charles Deberiotstraat 32, 3000 Leuven, Belgium, ²⁵Laboratorio de Biotecnología, Centro de Investigación La Platina, Instituto de Investigaciones Agropecuarias, INIA, Santa Rosa 11,610, P.O. Box 439-3, Santiago, Chile, ²⁶Biomedic, 1143-3, Joongdong, Wonmi-gu, Bucheon-si, Gyeonggi-do, 420-020, Korea, 27 INRA, UMR CBGP (INRA/IRD/CIRAD/Montpellier Supagro), F-34988 Montferrier-sur-Lez, France, ²⁸Division of EcoScience, Ewha Womans University, Seoul, Korea, ²⁹Department of Biology, University of Southern Maine, 96 Falmouth St, Portland, ME 04102, USA, ³⁰Conservation Biology Division, Northwest Fisheries Science Center, 2725 Montlake East, Seattle, WA 98112, USA, ³¹Inland Fisheries Research Institute, National Fisheries Research & Development Institute, Gapyeong, Gyeonggi-do, Korea, ³²Department of Life Science & Center for Tropical Ecology and Biodiversity, Tunghai University, Taichung, 40704, Taiwan, ³³Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environ-

2 PERMANENT GENETIC RESOURCES NOTE

mental Protection, Yancheng Teachers University, Yancheng 224002, China, ³⁴Ocean University of China, Qingdao 266003, China, ³⁵Shandong Entry-Exit Inspection and Quarantine Bureau, Qingdao 266002, China, ³⁶Plantlife Scotland, Balallan House, Allan Park, Stirling, Scotland FK8 2QG, UK, ³⁷INRA, UR633 Zoologie forestière, 45075 Orléans cedex 2, France, ³⁸Institut Supérieur de l'Animation pour la Jeunesse et la Culture, Bir El Bey, Université de Tunis, Tunisia, ³⁹Laboratorio de Genética y Evolución, Facultad de Ciencias, Univ. de Chile, Las Palmeras 3425, Ñuñoa, Box 780-0024, Santiago, Chile, ⁴⁰Universidade Federal do Pará - Altamira, Faculdade de Ciências Biológicas, Rua Coronel José Porfírio, N 2515, 68372-040 – Altamira, PA, Brasil, ⁴¹Department of Biotechnology, Kumaon University, Bhimtal-263136, Uttarakhand, India, ⁴²Institute for Agricultural and Fisheries Research (ILVO-Fisheries), Ankerstraat 1, 8400 Ostend, Belgium, ⁴³Syngenta-Chile, Av. Vitacura 2939 Of. 201, Santiago, Chile, ⁴⁴University of Bern, Institute of Ecology and Evolution, Dept. Evolutionary Ecology, Baltzerstrasse 6, 3012 Bern, Switzerland, ⁴⁵UMR 1272, UPMC-INRA, Physiologie de l'insecte: Signalisation et Communication, Route de Saint Cyr, 78026 Versailles Cedex, France, ⁴⁶Conservation Genetics Laboratory, USFWS, 1011 East Tudor Rd., Anchorage, AK 99503, USA, ⁴⁷Cairngorms Rare Plants Project, Scottish Natural Heritage, Achantoul, Aviemore, Inverness-shire, PH22 1QD, ⁴⁸Unité expérimentale de lutte biologique, INRA, 400 route des Chappes, 06903 Sophia-Antipolis Cedex, France, ⁴⁹KULeuven, Laboratory for Cytogenetics and Genome Research, O&N, Herestraat 49, 3000 Leuven, Belgium, ⁵⁰Department of Environmental Science, University of Southern Maine, 37 College Ave, Gorham, ME 04038, USA, ⁵¹Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China

Abstract

This article documents the addition of 299 microsatellite marker loci and nine pairs of single-nucleotide polymorphism (SNP) EPIC primers to the Molecular Ecology Resources (MER) Database. Loci were developed for the following species: Alosa pseudoharengus, Alosa aestivalis, Aphis spiraecola, Argopecten purpuratus, Coreoleuciscus splendidus, Garra gotyla, Hippodamia convergens, Linnaea borealis, Menippe mercenaria, Menippe adina, Parus major, Pinus densiflora, Portunus trituberculatus, Procontarinia mangiferae, Rhynchophorus ferrugineus, Schizothorax richardsonii, Scophthalmus rhombus, Tetraponera aethiops, Thaumetopoea pityocampa, Tuta absoluta and Ugni molinae. These loci were cross-tested on the following species: Barilius bendelisis, Chiromantes haematocheir, Eriocheir sinensis, Eucalyptus camaldulensis, Eucalyptus cladocalix, Eucalyptus globulus, Garra litaninsis vishwanath, Garra para lissorhynchus, Guindilla trinervis, Hemigrapsus sanguineus, Luma chequen. Guayaba, Myrceugenia colchagüensis, Myrceugenia correifolia, Myrceugenia exsucca, Parasesarma plicatum, Parus major, Portunus pelagicus, Psidium guayaba, Schizothorax richardsonii, Scophthalmus maximus, Tetraponera latifrons, Thaumetopoea solitaria, Thaumetopoea libanotica, Thaumetopoea pinivora, Thaumetopoea pityocampa wilkinsoni and Tor putitora. This article also documents the addition of nine EPIC primer pairs for Euphaea decorata, Euphaea formosa, Euphaea ornata and Euphaea yayeyamana.

This article documents the addition of 299 microsatellite marker loci and nine pairs of single-nucleotide polymorphism (SNP) genotyping primers to the Molecular Ecology Resources Database. Table 1 contains information on the focal species, the number of loci developed, any other species the loci were tested in and the accession numbers for the loci in both the Molecular Ecology Resources Database and GenBank. The authors responsible for each set of loci are listed in the final column. Table 2 presents information on SNP genotyping resources added to the MER database and presents data on the focal species, the number of sequencing primer pairs, the observed number of SNPs, other species the loci were tested in, and the number of allele specific primers or probes. The MER database and GenBank accession numbers and the authors responsible are also listed. Table 3 outlines additional permanent genetic resources that have been uploaded to the MER program wiki (http://tomato.biol. trinity.edu/programs/). A full description of the development protocol for the loci presented in Tables 1 & 2 can be found on the Molecular Ecology Resources Database (http://tomato.biol.trinity.edu/).

Table 1 Information on the focal species, the number of loci developed, any other species the loci were tested in and the accession numbers for the loci in both the Molecular Ecology Resources (MER) Database and GenBank. The authors responsible for each set of loci are listed in the final column

Species	No. primers developed	Other species tested	MER database no.	GenBank accession no.	Authors
Alosa pseudoharengus, Alosa aestivalis	18	n/a	47166–47201	JN383992–JN384009	Labbe, Ellen M.; Argo, Emily E.; Schultz, Thomas F.; Palkovacs, Eric P.;Willis, Theodore V.

Correspondence: Molecular Ecology Resources Primer Development Consortium, E-mail: editorial.office@molecol.com

Table 1 (Continued)

Species	No. primers developed	Other species tested	MER database no.	GenBank accession no.	Authors
Aphis spiraecola	9	n/a	47081–47089	HM854169–HM854171, JN214382–JN214384, JN214386–JN214388	Mezghani-Khemakhem, M.; Kharrat, I.; Casse, N.; Bouktila, D.; Makni, M.; Makni H
Argopecten purpuratus	8	n/a	47373-47380	JN674552–JN674559	Haye, P. A.; Segovia, N. I.; Gallardo-Escárate C
Coreoleuciscus splendidus	13	n/a	47143–47155	JF972368–JF972380	Kwan, Ye-Seul; Lee, Wan-Ok; Won, Yong-Jin
Garra gotyla	28	G. para lissorhynchus, G. litaninsis vishwanath, Barilius bendelisis, Schizothorax richardsonii, Tor putitora	47345–47372	HQ288484, HQ288485, HQ288489–HQ288499, HQ288501, HQ288502, HQ288504, HQ288506, HQ288507, HQ288510, HQ288511, HQ288517, HQ288526, HQ288661, JF268657, JF268662, JF268664, JF268665	Matura, Rakesh; Chandra, Suresh; Barat, Ashoktaru; Pande, Veena; Mahanta, Prabin Chandra
Hippodamia convergens	12	n/a ′	47397–47408	JN565049–JN565060	Michel, Andy P.; Zhang, W.; Gardiner, Mary M.
Linnaea borealis	10	n/a	47156–47165	JN674504–JN674512	A'Hara, S. W.; Scobie, A. R.; Broome, A.; Long, D.; Cottrell, J. E.
Menippe mercenaria, M. adina	22	n/a	46925–46968	GU970048–GU970069	Seyoum, Seifu; Bert, Theresa M.; Puchulutegui, Cecilia; Davis, Michelle C.; Muriel-Cunha, Janice; Crawford, Charles R.; Mcmillen-Jackson, Anne L.; Barbieri Luiz
Parus major	15	n/a	47128–47142	HQ263118-HQ263132	Saladin, Verena; Bichnor Heinz
Pinus densiflora	16	n/a	47381–47396	JN634766-JN634781	Lee, Kyung Mi; Kim, Yong Yul; Kim, Ki Hwan; Jeon, Ji Hyun; Cho, Kyung Jin
Portunus trituberculatus	11	P. pelagicus, Eriocheir sinensis, Hemigrapsus sanguineus, Chiromantes haematocheir, Parasesarma plicatum	46914–46924	JF505633–JF505643	Li, H.; Ye, N. H.; Liu, Y. G.; Zhang, Y. X.; Liu, S. S.

4 PERMANENT GENETIC RESOURCES NOTE

Species	No. primers developed	Other species tested	MER database no.	GenBank accession no.	Authors
Procontarinia mangiferae	11	n/a	47057–47067	JF746879–JF746889	Amouroux, P.; Normand, F.; Nibouche, S.; Delatte H.
Rhynchophorus ferrugineus	15	n/a	47113–47127	JN374673–JN374687	Capdevielle-Dulac, C.; El-Mergawy, R. A. A. M.; Avand-Faghih, A.; Rochat, D.; Silvain, IF.
Schizothorax richardsonii	34	n/a	47292–47325	HM591233–HM591236, HM591238, HM591240–HM591242, HM591244, HM591246–HM591256, HM591258, HM591260, HM591264–HM591266, HM591270–HM591272, HM591276, HM591278, HM591279, HM591281, HM591283	Barat, Ashoktaru; Chandra, Suresh; Matura, Rakesh
Scophthalmus rhombus	15	S. maximus	47090–47104	JF900344–JF900358	Vandamme, S. G.; Maes, G. E.; Van Houdt, J. K. J.; Hellemans, B.; Robbens, J.; Parmentier, K.; Volckaert, F. A. M.
Tetraponera aethiops	14	T. latifrons	46982–47009	JN190035–JN190048	Piatscheck, F.; Djieto-Lordon, C.; Garcia, M.; Sauve, M.; Peccoud, J.; Dubois, M. P.; McKey, D.; Blatrix, R.
Thaumetopoea pityocampa	13	T. p. ena clade, T. wilkinsoni, T. pinivora, T. libanotica, T. bonjeani, T. ispartensis, T. solitaria	46969–46981	JN400258–JN400270	Burban, C.; Magnoux, E.; Rousselet, J.; Kerdelhué, C.
Tuta absoluta	19	n/a	47326–47344	JN680765–JN680783	Guillemaud, Thomas; Legoff, Isabelle; Blin, Aurélie; Tabone, Elisabeth; Desneux, Nicolas; Malausa, Thibaut

Table 1 (Continued)

Table 1 (Continued)

Species	No. primers developed	Other species tested	MER database no.	GenBank accession no.	Authors
Ugni molinae	16	Myrceugenia correifolia, M. colchagüensis, M. exsucca, Guindilla trinervis, Luma chequen. Guayaba, Psidium guayaba, Eucalyptus cladocalix, E. camaldulensis, E. globulus	46809–46824	HQ917086-HQ917101	Ramos, R.; Ravest, G.; Méndez, M.A.; Hinrichsen, P.

Table 2 Information on the focal species, the sequencing primer pairs developed, the number of single-nucleotide polymorphisms (SNPs) observed and any other species the loci were tested in. The next columns contain the number of allele specific primers and probes developed and the Molecular Ecology Resources (MER) database and GenBank accession numbers, respectively. The authors responsible for each set of loci are listed in the final column

Species	No. primer pairs	No. SNPs in sequence	Other species tested	No. Allele specific primers/ probe	Target gene(s)	MER database numbers	Genbank Accession no.	Authors
Euphaea formosa, E. yayeyamana, E. ornata, E. decorata	9	See Table 2 in text for details.	n⁄a	n/a	See Table 1 in text for details.	47048-47056	JN246927–JN247002, JN389796–JN390424	Lee, Yat-Hung; Lin, Chung-Ping

Table 3 Information on other resources recently uploaded to the Molecular Ecology Resources program wiki (http:// tomato.biol.trinity.edu/programs/). The authors are listed in the final column

Species	Category	Type of resource	Authors
Oncorhynchus tshawytscha	Technique	Microsatellite allele ladder-based standardization	LaHood, Eric; Schlei, Ora; Wenburg, John; Moran, Paul

1	Primers for amplification of nuclear introns in four East Asian black-banded
2	gossamer-wing Euphaea damselflies
3	
4	Yat-Hung Lee and Chung-Ping Lin [*]
5	Department of Life Science & Center for Tropical Ecology and Biodiversity, Tunghai
6	University, Taichung, 40704, Taiwan
7	
8	Key words: EPIC loci, introns, speciation, Euphaea, Euphaeidae, Odonata
9	
10	* Correspondence: Chung-Ping Lin, No. 181, Sec. 3, Taichungkang Rd., Department of
11	Life Science, Tunghai University, Taichung, Taiwan 40704, tel: 886-423590121 ext.
12	32412, fax: 886-423590296, e-mail: treehops@thu.edu.tw
13	

14 Running title: EPIC primers for *Euphaea* damselflies

15 Abstract

- 16 This study describes the development and testing of exon-primed, intron-crossing
- 17 (EPIC) degenerate primers for amplifying nuclear introns in four closely related
- 18 *Euphaea* damselflies. Primers were developed by comparing sequence variations from a
- 19 few model insects and the orthologous sequences of *E. formosa* and *E. yayeyamana*
- 20 obtained from 454 pyrosequencing. Most of the amplified regions were highly variable
- 21 and are being used to study the gene flow, divergence time and effective population sizes
- 22 in sibling *Euphaea* species.

23	The gossamer-wing damselfly genus, Euphaea Selys 1840 (Odonata,
24	Euphaeidae), is comprised of approximately 30 species occurring predominantly in
25	lower to middle elevation forest streams of tropical and subtropical Asia (Orr &
26	Hämäläinen 2003; Schorr & Paulson 2009). Euphaea damselflies are territorial because
27	males exhibit aggressive behavior towards intruding con-specifics and females appear
28	periodically inside these territories and mate with territory owners (Thompson 1998;
29	Huang & Lin 2011). The four closely related East Asian Euphaea species, E. formosa, E.
30	yayeyamana, E. ornata and E. decorata are characterized by distinctive black bands
31	towards the tip of male hind wings, and are each endemic to Taiwan, Ishigaki and
32	Iriomote of Japan, Hainan island of China, and continental Southeast Asia, respectively
33	(Schorr & Paulson 2009). These damselflies provide an excellent "non-model" system to
34	investigate the geographic modes of speciation (for example allopatric versus parapatric
35	models) in natural populations residing in the Asian tropics, because they are each
36	endemic to currently discontinuous geographic regions. For this reason, the evolutionary
37	diversification of these damselflies is considered to be allopatric in origin (Hayashi 1990;
38	Huang & Lin 2011). However, testing the validity of a strict allopatric speciation model
39	in natural populations often requires utilization of a sufficient number of informative and
40	unlinked loci under a theoretical framework of coalescence (Pinho & Hey 2010). For
41	Euphaea damselflies, the available primers for population genetic analysis are limited to
42	linked mitochondrial genes (Turgeon & McPeek 2002; Hayashi et al. 2005; Lin et al.
43	2010) and a few nuclear genes such as <i>ITS</i> and <i>EF-1</i> α (Jordan <i>et al.</i> 2003; Hayashi <i>et al.</i>
44	2004; Dumont et al. 2005). These nuclear genes generally show minimal sequence
45	variation at the population level and among closely related species.
46	In this study, we developed EPIC (exon-primed, intron-crossing) loci for
47	phylogeographic and population genetic inference in the four Euphaea damselflies. The

48	cDNA libraries were reconstructed for <i>E. formosa</i> and <i>E. yayeyamana</i> using the heads of
49	damselflies preserved in RNAlater stabilization solution (Ambion, Canada). The head
50	tissue was frozen with liquid nitrogen, and ground into a fine power with the MagNa
51	Lyser Instrument (Roche Diagnostic, Germany). The RNA was extracted with TRIzol
52	reagent (Invitrogen, USA). The first strand of cDNA was synthesized using the Creator
53	SMART cDNA library construction kit (ClonTech, USA) according to the
54	manufacture's instructions. Double-stranded cDNA was prepared using the first-strand
55	reaction by ligation-dependent PCR (LD-PCR) with provided primers. The normalized
56	double-stranded cDNA of each species was used for a quarter run of 454 pyrosequencing
57	on the Genome Sequencer GS FLX System (Roche Diagnostic, Germany) at the Mission
58	Biotech, Taiwan. Totally 47,075 and 111,068 reads (average length = 248 and 161
59	nucleotides) were generated from the pyrosequencing runs for <i>E. yayeyamana</i> and <i>E.</i>
60	formosa, respectively. The number of 454 reads was small for E. yayeyamana as a result
61	of sub-optimal RNA isolation and cDNA construction. The original reads were
62	assembled using GS De Novo Assembler software (Roche Diagnostic, Germany) without
63	a reference genome. After assembling the 454 reads, we obtained between 49 and 163
64	contig sequences with lengths exceeding 500 base pairs (bp) for <i>E. yayeyamana</i> and <i>E.</i>
65	formosa, respectively. These contig sequences were blasted in GenBank database to
66	search for matches with known insect genes. The blast hits were used to assign
67	annotations to the corresponding sequences. Approximately 40 annotated nuclear
68	protein-coding genes were shared between the two species. We downloaded the full
69	mRNA of these genes from various insect genomes, and aligned them with the
70	orthologous contig sequences of the two Euphaea to map the locations of introns and
71	exons. The degenerate primers were designed from areas of conserved amino acids
72	flanking regions of exons that contain introns. We developed two to four forward and

two to three reverse primers for each locus, resulting in four to eight primer combinations per locus. For $EF1 \alpha$, we used primers developed for *Megalagrion* damselflies (Jordan *et al.* 2003).

76 Whole genomic DNA was extracted from thoracic muscle of 18 to 23 specimens 77 of E. decorata (Tai Po Kau, Shing Mun Country Park and Wu Kau Tang of Hong Kong; 78 Tam Dao and Me Linh of Vietnam), E. formosa (Tsengwen, Lienhuachih, Touchien, 79 Shimenkeng of Taiwan), E. ornata (Jianfengling and Mt. Diaoluo of Hainan) and E. 80 yayeyamana (Hoshino and Fuanasogawa of Ishigaki; Shiiragawa of Iriomote) preserved 81 in 95 % ethanol using MasterPureTM Complete DNA and RNA Purification Kit 82 (EPICENTRE, Wisconsin, USA). The primary combinations were used in polymerase 83 chain reaction (PCR) to screen for successful amplification of target DNA fragments. 84 The PCR reaction contained 1µl of genomic DNA (100 to 300 ng/µl), 1µl of ProTaq 85 polymerase (2u/ul, Protech Technology, Taiwan), 2ul of forward and reverse primer 86 (10mM), 4µl of dNTPs (1mM), 5µl of ProTaq buffer and 35µl of ddH₂O. The PCR 87 cycling profile was as follows: one minute of denaturation at 94°C, followed by 45 88 seconds of annealing at optimal annealing temperature (Tm), and then one minute of 89 extension at 72°C (repeated for 35 cycles) and finally 10 minutes of extension at 72°C. 90 The target DNA fragments were gel-purified and extracted using a Gel/PCR DNA 91 Fragments Extraction Kit (Geneaid, Taipei, Taiwan). Purified PCR products were 92 sequenced directly from both directions (act, awd2, $EF1\alpha$, sdhB and anon) or cloned into 93 pCR® 2.1-TOPO vector (Invitrogen) and then sequenced (arr2, fer, mlc and lop1). Table 94 1 lists the nine most successful primer combinations for amplifying the appropriate 95 products in four Euphaea species for each locus. The intron number and position for each 96 locus were conserved across the four species. The DNA sequences used in this study

97 were deposited in GenBank (accession numbers JN246927-247002,

98 JN389796-JN390424).

99 All degenerate primer pairs produced specific amplification except for the 100 primers of an anonymous locus (anon) (Table 2). Most of the amplified regions were 101 highly variable and had haplotype diversity (*Hd*) and nucleotide diversity (π) greater 102 than 0.637 and 0.01, respectively, except for the less variable act and sdhB. Elevated 103 levels of recombination were detected for a few loci (arr, fer and anon) suggesting 104 possible intra-locus recombination events in these regions. The Fay and Wu's H (H) and 105 Tajima's D (D) tests indicated that the majority of loci had not significantly deviated 106 from the expectation of neutrality, except for anon in E. ornata, fer in E. yayeyamana, 107 mlc in E. formosa, E. yayeyamana and E. decorata, and lop1 in E. yayeyamana. The 108 EPIC loci reported here provide useful and high-resolution markers for efficient 109 population genetic and phylogeographic studies in damselflies giving us the ability to 110 infer phylogenetic relationships and population structure, and estimate the extent and 111 direction of gene flow, divergence time and effective population sizes between sibling 112 species in these four Euphaea species. 113

114 Acknowledgements

This study was supported by research grants from the National Science Council of
Taiwan (NSC 93WFD0105096, 97-2621-B-029-001) and a Genetic Core Facility grant
from Tunghai University.

118

119 **References**

Dumont HJ, Vanfleteren JR, De Jonckheere JF, Weekers PHH (2005) Phylogenetic
relationships, divergence time estimation, and global biogeographic patterns of

122	Calopterygoid damselflies (Odonata, Zygoptera) inferred from ribosomal DNA
123	sequences. Systematic Biology, 54, 347-362.
124	Hayashi F (1990) Convergence of insular dwarfism in damselflies (Euphaea) and
125	dobsonflies (Protochermes). Freshwater Biology, 23, 219-231.
126	Hayashi F, Dobata S, Futahashi R (2005) Distributed population genetics: suspected
127	introgressive hybridization between two Mnais damselfly species (Odonata).
128	<i>Zoological Science</i> , 22 , 869-881.
129	Huang J-P, Lin C-P (2011) Lineage-specific late Pleistocene expansion of an endemic
130	subtropical gossamer-wing damselfly, Euphaea formosa, in Taiwan. BMC
131	Evolutionary Biology, 11, 94.
132	Jordan S, Simon C, Polhemus D (2003) Molecular systematics and adaptive radiation of
133	Hawaii's endemic damselfly genus Megalagrion (Odonata: Coenagrionidae).
134	Systematic Biology, 52 , 89-109.
135	Lin C-P, Chen M-Y, Huang J-P (2010) The complete mitochondrial genome and
136	phylogenomics of a damselfly, Euphaea formosa support a basal Odonata within
137	the Pterygota. Gene, 468, 20-29.
138	Orr AG, Hämäläinen M (2003) A guide to the dragonflies of Borneo: their Identification
139	and Biology. Natural History Publications, Kota Kinabalu.
140	Pinho C, Hey J (2010) Divergence with gene flow: models and data. The Annual Review
141	of Ecology, Evolution, and Systematics, 41 , 215-230.
142	Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA
143	polymorphism analyses by the coalescent and other methods. <i>Bioinformatics</i> , 19 ,
144	2496-2497.
145	Schorr M, Paulson DR (2009) World Odonata List. Available via
146	http://www.ups.edu/x6140.xml.

- 147 Thompson DJ (1998) On the biology of the damselfly *Euphaea ameeka* van Tol &
- 148 Norma-Rashid in Borneo (Zygoptera: Euphaeidae). *Odonatologica*, **27**, 259-265.
- 149 Turgeon J, McPeek MA (2002) Phylogeographic analysis of a recent radiation of
- 150 *Enallagma* damselflies (Odonata: Coenagrionidae). *Molecular Ecology*, **11**,
- 151 1989-2002.

Table 1 Locus information and primer sequences

Locus	Reference sequences	Region ¹	Identity ¹	Primers	Tm (°C)	Primer sequences (5'-3')
Actin (act)	Drosophila melanogaster	767-1170	portion of exon1	Act-115F	56-58	TGCTATGTSGCYCTKGACTTC
	NM169525			Act-539R		ACTCGTCGTAYTCCTGYTTSGA
	Apis mellifera					
	NM001185146					
Arrestin 2 (arr2)	Apis mellifera	757-1061	portion of exon4, intron4, exon5,	Arr-805F	54-56	GARATCTACTACCAYGGYGAGAA
	XM623181		intron5, portion of exon6	Arr-1087R		ACCARRGTGGARGABGCMARGTT
	Acyrthosiphon pisum					
	XM001952468					
	Drosophila melanogaster					
	NM079252					
Abnormal wing discs	Acyrthosiphon pisum	434-587	portion of exon1, intron1,	Awd-195F	53-55	GGAGGGACTCAATTCTGTCAAA
(<i>awd2</i>)	NM001126184		portion of exon2	Awd-329R		AATTTCCTTCTGAGCTGACTCAA
	Drosophila melanogaster					
	NM057413					
	Tribolium castaneum					
	XM962410					
	Apis mellifera					
	XM393351					
Elongation factor 1alpha	Drosophila melanogaster	1374-2148	portion of exon1, intron1, exon2,	EF-1-F-2361 ²	54	YGGMCACAGRGATTTCATCAA ²
$(EF1\alpha)$	NM20659		intron2, portion of exon3	EF1-R-3093 ²		CCAGGRTGGTTRAGCACRATGA ²
	Apis mellifera		(one additional intron within exon1			
	NM001011628		present in Euphaea)			
	Tribolium castaneum					
	NM001114363					

Ferritin (fer)	Oncometopia nigricans AY725783 Homalodisca coagulata	19-227	NA	Fer-29F Fer-344R	53-55	CAATSGCAWACTAYTTYGAYCAAG TCYTTRATGGCCTCRACYTGYT
Myosin light chain (mlc)	AY588064 Acyrthosiphon pisum NM001162731 Nasonia vitripennis	491-643	portion of exon3, intron3, exon4, intron4, portion of exon5	mlc-62F mlc-171R	56	CTGCTCACMCTTTTYGCCWACCG CAGGTCATAAGGGCGTGCCTGA
	XM001608197 Tribolium castaneum XM969595 Aedes aegypti XM001655528					
Long wavelength opsin (lop1)	Nasonia vitripennis NM001170908 Anopheles gambiae XM001238569	704-974	portion of exon3, intron4, portion of exon4	E-2409-opsin-F-417 E-2409-opsin-R-710	54-56	CCTTTGGCACGGAATCTTAG CATTGTATCTGTCCATGGCG
Succinate dehydrogenase B (<i>sdhB</i>)	Acyrthosiphon pisum NM001162436 Tribolium castaneum NM001170889 Nasonia vitripennis NM001172331 Apis mellifera NW003378042	295-547	portion of exon2, intron2, exon3, intron3, portion of exon4	SdhB-16F SdhB-268R	54-56	TAYCGATGGAAYCCRGAHAAGSC AYNACRTACATRTGBGGYARHGG
Anonymous (anon)	NA	NA	NA	mlc-44F mlc-182R	53	CCAATCAACTTCACCCAACTGCT GAACTTGTCTCCCCAGGTCATAAG

¹Genomic regions refer to the mRNA sequences of the first species listed in reference sequences; numbers indicate to the 3' position of the primers; ²Primers developed by Jordan *et al.* 2003.

Table 2 Polymorphism and summary statistics in four Euphaea species

Locus	Species	Coding	Non-coding	Ν	S	S_e	S_i	Hd	π	Rm	Н	D
act	formosa	445	0	19	3	3	0	0.591	0.0015	0	0.444	-0.607
	yayeyamana	445	0	18	1	1	0	0.503	0.0011	0	0.183	1.378
	decorata	445	0	18	1	1	0	0.503	0.0011	0	0.183	1.378
	ornata	445	0	24	1	1	0	0.489	0.0011	0	-0.326	1.391
arr2	formosa	305	1029	15	25	5	20	0.838	0.0056	0	-2.590	-0.151
	yayeyamana	305	1029	19	51	5	46	0.883	0.0108	7	6.368	-0.154
	decorata	305	1016	21	64	16	48	0.952	0.0125	13	1.752	-0.363
	ornata	305	1016	20	49	10	39	0.947	0.0098	5	6.358	-0.329
awd2	formosa	154	212	19	5	1	4	0.789	0.0039	0	0.561	-0.084
	yayeyamana	154	212	17	16	2	14	0.809	0.0115	0	2.919	-0.695
	decorata	154	212	21	14	1	13	0.805	0.0095	1	1.214	-0.421
	ornata	154	212	19	12	2	10	0.813	0.0083	0	2.041	-0.705
EF1α	formosa	785	243	18	11	9	2	0.784	0.0018	0	0.601	-1.561
	yayeyamana	785	243	19	8	8	0	0.889	0.0020	2	1.076	-0.292
	decorata	782	243	21	10	8	2	0.814	0.0019	1	1.505	-1.027
	ornata	782	243	20	9	6	3	0.637	0.0014	0	-0.632	-1.441
fer	formosa	337	876	24	43	10	33	0.884	0.0059	3	-2.377	-1.576
	yayeyamana	337	876	25	18	5	13	0.900	0.0032	3	-9.930**	-0.705
	decorata	337	878	20	84	11	73	0.974	0.0120	7	-8.389	-1.624
	ornata	337	878	14	38	8	30	0.945	0.0139	2	2.022	1.699
mlc	formosa	193	696	22	53	4	49	0.952	0.0163	6	-9.333*	-0.313
	yayeyamana	193	696	20	40	1	39	0.953	0.0133	0	-12.294*	-0.412
	decorata	193	700	19	26	2	24	0.883	0.0085	1	-9.994*	-0.337
	ornata	193	700	24	53	3	50	0.975	0.0176	1	0.964	0.115
lop1	formosa	311	1070	18	85	4	81	0.922	0.0248	5	4.837	1.375
	yayeyamana	311	1070	16	38	0	38	0.875	0.0131	0	0.717	2.392*
	decorata	311	1057	23	47	5	42	0.960	0.0072	0	6.917	-0.920
	ornata	311	1057	21	52	5	47	0.967	0.0083	5	7.957	-0.890
sdhB	formosa	275	200	21	14	13	1	0.914	0.0080	1	-0.771	-0.344
	yayeyamana	275	200	17	6	5	1	0.750	0.0056	1	1.581	0.962
	decorata	258	200	14	3	2	1	0.495	0.0032	0	-1.187	1.753
	ornata	258	200	21	1	1	0	0.429	0.0009	0	0.257	0.959
anon	formosa	0	450	17	33	NA	NA	0.919	0.0228	6	0.816	-0.090
	yayeyamana	0	450	17	7	NA	NA	0.875	0.0048	1	-2.265	0.079
	decorata	0	459	20	35	NA	NA	0.953	0.0250	5	1.842	0.383
	ornata	0	459	24	32	NA	NA	0.902	0.0131	3	-10.601*	-1.121

N: number of sequences; S: number of polymorphic sites; S_e : number of polymorphic sites in exons; S_i : number of polymorphic sites in introns; *Hd*: haplotype diversity; π : nucleotide diversity; *Rm*: minimum number of recombination events; *H*: Fay and Wu's H; *D*: Tajima's D; NA: not available; * *p*<0.05, ** *p*<0.01; summary statistics were calculated in DnaSP v.5.0 (Rozas *et al.* 2003).